
ANALYSIS AND TOPOLOGY—EXAMPLES 4
(updated 24 November 2024)

Exercises

1. Recall from lectures that a non-empty topological space (X, τ) is said to be connected
if there is no separation of X by open, non-empty, disjoint subsets. Show that (X, τ) is
connected if and only if the only subsets of X that are open and closed in X are ∅ and
X itself.

2. Let (X, ‖·‖) be a normed vector space over R (as defined in Linear Algebra), and recall
that the norm induces a canonical metric on X given by d(x, y) = ‖x − y‖. Show that
the open and closed balls of such (X, d) are path connected.
If you are not yet familiar with the concept of norm: it’s a function ‖·‖ : X → R which is
positive definite (‖x‖ ≥ 0 with equality iff x = 0), subadditive (obeys a triangle inequality
‖x − y‖ ≤ ‖x‖ + ‖y‖) and absolutely homogeneous with respect to scalar multiplication
(‖λx‖ = |λ|‖x‖).

3. Show that if (X, τ) is path-connected, then it is also connected.
4. Show that the relation ∼ on X defined by x ∼ y if and only if x, y ∈ X are path-connected

is an equivalence relation. (Recall from lectures that the equivalence classes are called
the path-components of X.) Hint: apply question 8 from sheet 3.

5. Verify that the following properties of differentiation in single-variable remain true in
multiple variables.
(a) (Sum and scalar multiplication) Let functions f, g : Rn → Rm be differentiable at

x0 ∈ Rn. Show that λf + g, where λ ∈ R, is also differentiable at x0 ∈ Rn. What is
its derivative?

(b) (Product rule) Let f : Rn → Rm and g : Rn → Rd be differentiable at x0 ∈ Rn. Show
that f · g, where · denotes the inner product, is also differentiable at x0 ∈ Rn, with
D(fg)|x0 = Df |x0 · g(x0) + f(x0) ·Dg|x0 .

(c) (Chain rule) Let f : Rn → Rm be differentiable at x0 ∈ Rn and g : Rm → Rd be
differentiable at f(x0) ∈ Rm. Show that f ◦ g is differentiable at x0 ∈ Rn, with
D(f ◦ g)|x0(h) = Df |g(x0)(Dg|x0(h)).

Problems

6. Which of the following subsets of R2 with the Euclidean topology are connected? Which
are path-connected? (And why?)
(a) {(x, y) ∈ R2 : ‖(x, y)− (−1, 0)‖ 6 1 or ‖(x, y)− (1, 0)‖ < 1};
(b) {(x, y) ∈ R2 : x = 0 or y = qx for q ∈ Q};
(c) {(x, y) ∈ R2 : x = 0 or y = qx for q ∈ Q}\{(0, 0)};
(d) S ⊂ R2 any star-shaped domain, i.e. a set with the property that there is a point

x0 ∈ S such that for all x ∈ S, the line segment between x0 and x is contained in S.
7. Let K1 ⊃ K2 ⊃ K3 ⊃ · · · be a decreasing sequence of non-empty, connected, compact

subsets of a Hausdorff space X. Let K =
⋂∞

n=1Kn.
(a) Show that K is non-empty.
(b) Show that K is connected.
(c) Give an example with X = R2 to show that the conclusion of part (b) need not be

true if Kn are assumed to be “closed” instead of “compact”.
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8. Show that if f : S1 → R is continuous then there is an x ∈ S1 such that f(−x) = f(x).
Deduce that at any point in time there are antipodal locations on the Earth’s equator
that have the same temperature.

9. (?) Let f : Rm → Rn be a function under which the image of each path-connected set is
path-connected and the image of each compact set is compact. Show that f is continuous.

10. (?) Let f : R2 → R and (x0, y0) ∈ R2.
(a) Suppose that ∂1f exists and is continuous in some open ball around (x0, y0), and

that ∂2f exists at (x0, y0). Show that f is differentiable at (x0, y0).
(b) Suppose instead that ∂1f exists and is bounded on some open ball around (x0, y0),

and that for fixed x the function y 7→ f(x, y) is continuous. Show that f is continuous
at (x0, y0).

11. Consider the map f : Rn → Rn given by f(x) = x/‖x‖ for x 6= 0, and f(0) = 0.
(a) Using the definition of derivative, show that x 7→ ‖x‖2 is differentiable and compute

its derivative. Note: please avoid using partial derivatives.
(b) Using part (a) and questions 5(b) and 5(c), show that f is differentiable except at

0, and that
Df |x(h) = h

‖x‖
− x(x · h)
‖x‖3

.

Note: please avoid using partial derivatives.
(c) Verify that Df |x(h) is orthogonal to x and explain geometrically why that is.

12. Define f : Mn →Mn by f(A) = A2.
(a) Show that f is continuously differentiable on the whole of Mn.
(b) Deduce that there is a continuous square root function on some neighbourhood of

the identity Id; that is, show that there is an open ball Bε(Id) for some ε > 0 and a
continuous function g : Bε(Id)→Mn such that g(A)2 = A for all A ∈ Bε(Id).

(c) Is it possible to define a continuous square-root function on the whole of Mn?
13. Consider the function det : GLn(R)→ R, where GLn(R) = {X ∈Mn : X invertible}.

(a) Show that GLn(R) is an open subset of Mn.
(b) Show that det is differentiable over all of GLn(R), withD det |A(H) = detA tr(A−1H).
(c) Show that det is twice differentiable at I and find D2 det |I as a bilinear map.

14. Let fn : I → R, with I ⊂ R, be given by:
(a) fn(x) = xe−nx and I = [0,+∞);

(b) fn(x) = n2x

1 + n4x2 on I = [0, 1];

(c) fn(x) = (−1)nx
n

n
on I = [0, 1].

For each case, determine if the series
∑∞

n=1 fn converges or diverges in I. In the former
case, justify if the convergence is pointwise, uniform, pointwise absolute, uniform absolute.

15. Consider the series of functions
∑∞

n=1(x− n)−2, for x ∈ X := R\N→ R.
(a) Show that the series converges pointwise on X.
(b) Does the series converge uniformly on X?
(c) Show that the series is continuous, i.e. f(x) =

∑∞
n=1(x− n)−2 ∈ C(X).

OPTIONAL extra problems (not for marking)

16. Let f : U → Rm, where U ⊂ Rn+m open, be a continuously differentiable function. (By
convention, we use the notation x ∈ Rn and y ∈ Rm.) Let x0 ∈ Rn and y0 ∈ Rm be such
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that (x0, y0) ∈ U . Suppose f(x0, y0) = 0 and that

Jyf |(x0,y0) := det

[∂f j

∂yi

]m

i,j=0

 6= 0

(a) Let F (x, y) = (x, f(x, y)). Show that F is locally invertible around the point (x0, 0).
(b) Let G = (G1, . . . , Gn+m) denote the local inverse of f . Show that, for points (X, 0),

X ∈ Rn, in the domain of G, one has f(X,Gn(X, 0), . . . Gn+m(X, 0)) = 0.
(c) Deduce that there exists an open neighborhood W ′ ⊂ Rn of x0 and an open neigh-

borhood W ′′ ⊂ Rm of y0 satisfying W ′ ×W ′′ ⊂ U , and a unique map g : W ′ → W ′′

such that {
g(x0) = y0

f(x, g(x)) = 0
.

We call g the implicit function defined by the zero set of f .
(d) Show that g is differentiable and compute its derivative.
(e) As an application, show that the level set C = {(x, y) ∈ R2 : x3 + y3 − 3yx = 0} is

locally graphical, except in small neighborhoods of (0, 0) and (2
2
3 , 2

1
3 ).

17. Let (X, τ) be a compact Hausdorff space. Let K ⊂ X be closed and f : K → [−1, 1] be
a continuous function (with respect to subspace topology on K).
(a) Show that there exists a continuous g1 : X → R such that supX |g1| ≤ 1

3 and
supK |f − g1| ≤ 2

3 . You may assume the following statement: for any closed disjoint
sets A,B ⊂ X and −∞ < a < b < ∞, one can find a continuous bump function
χ : X → [a, b] such that χ(x) = a for x ∈ A and χ(x) = b for x ∈ B.

(b) For n ≥ 1, construct continuous functions gn : X → R such that

sup
X
|gn| ≤

1
3

(2
3

)n−1
and sup

K
|f −

n∑
j=1

gj | ≤
(2

3

)n

.

(c) Deduce that the series g(x) =
∑∞

j=0 gn(x) is a well-defined continuous real-valued
function on X such that g|K = f .

Email comments and suggestions to rbdt2@cam.ac.uk
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