ANALYSIS AND TOPOLOGY—EXAMPLES 4

(updated 24 November 2024)

Exercises

- 1. Recall from lectures that a non-empty topological space (X, τ) is said to be connected if there is no separation of X by open, non-empty, disjoint subsets. Show that (X, τ) is connected if and only if the only subsets of X that are open and closed in X are \emptyset and X itself.
- **2.** Let $(X, \|\cdot\|)$ be a normed vector space over \mathbb{R} (as defined in Linear Algebra), and recall that the norm induces a canonical metric on X given by d(x,y) = ||x - y||. Show that the open and closed balls of such (X, d) are path connected. If you are not yet familiar with the concept of norm: it's a function $\|\cdot\|: X \to \mathbb{R}$ which is positive definite ($||x|| \ge 0$ with equality iff x = 0), subadditive (obeys a triangle inequality $||x - y|| \leq ||x|| + ||y||$ and absolutely homogeneous with respect to scalar multiplication
- $(\|\lambda x\| = |\lambda| \|x\|).$ **3.** Show that if (X, τ) is path-connected, then it is also connected.
- **4.** Show that the relation \sim on X defined by $x \sim y$ if and only if $x, y \in X$ are path-connected is an equivalence relation. (Recall from lectures that the equivalence classes are called the path-components of X.) Hint: apply question 8 from sheet 3.
- 5. Verify that the following properties of differentiation in single-variable remain true in multiple variables.
 - (a) (Sum and scalar multiplication) Let functions $f, g: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $x_0 \in \mathbb{R}^n$. Show that $\lambda f + g$, where $\lambda \in \mathbb{R}$, is also differentiable at $x_0 \in \mathbb{R}^n$. What is its derivative?
 - (b) (Product rule) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^n \to \mathbb{R}^d$ be differentiable at $x_0 \in \mathbb{R}^n$. Show that $f \cdot g$, where \cdot denotes the inner product, is also differentiable at $x_0 \in \mathbb{R}^n$, with $D(fg)|_{x_0} = Df|_{x_0} \cdot g(x_0) + f(x_0) \cdot Dg|_{x_0}.$
 - (c) (Chain rule) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $x_0 \in \mathbb{R}^n$ and $g: \mathbb{R}^m \to \mathbb{R}^d$ be differentiable at $f(x_0) \in \mathbb{R}^m$. Show that $f \circ g$ is differentiable at $x_0 \in \mathbb{R}^n$, with $D(f \circ g)|_{x_0}(h) = Df|_{q(x_0)}(Dg|_{x_0}(h)).$

Problems

- 6. Which of the following subsets of \mathbb{R}^2 with the Euclidean topology are connected? Which are path-connected? (And why?)
 - (a) $\{(x,y) \in \mathbb{R}^2 : ||(x,y) (-1,0)|| \le 1 \text{ or } ||(x,y) (1,0)|| < 1\};$

 - (b) $\{(x,y) \in \mathbb{R}^2 : x = 0 \text{ or } y = qx \text{ for } q \in \mathbb{Q}\};$ (c) $\{(x,y) \in \mathbb{R}^2 : x = 0 \text{ or } y = qx \text{ for } q \in \mathbb{Q}\} \setminus \{(0,0)\};$
 - (d) $S \subset \mathbb{R}^2$ any star-shaped domain, i.e. a set with the property that there is a point $x_0 \in S$ such that for all $x \in S$, the line segment between x_0 and x is contained in S.
- 7. Let $K_1 \supset K_2 \supset K_3 \supset \cdots$ be a decreasing sequence of non-empty, connected, compact subsets of a Hausdorff space X. Let $K = \bigcap_{n=1}^{\infty} K_n$.
 - (a) Show that K is non-empty.
 - (b) Show that K is connected.
 - (c) Give an example with $X = \mathbb{R}^2$ to show that the conclusion of part (b) need not be true if K_n are assumed to be "closed" instead of "compact".

- 8. Show that if $f: \mathbb{S}^1 \to \mathbb{R}$ is continuous then there is an $x \in \mathbb{S}^1$ such that f(-x) = f(x). Deduce that at any point in time there are antipodal locations on the Earth's equator that have the same temperature.
- **9.** (\star) Let $f \colon \mathbb{R}^m \to \mathbb{R}^n$ be a function under which the image of each path-connected set is path-connected and the image of each compact set is compact. Show that f is continuous.
- **10.** (\star) Let $f \colon \mathbb{R}^2 \to \mathbb{R}$ and $(x_0, y_0) \in \mathbb{R}^2$.
 - (a) Suppose that $\partial_1 f$ exists and is continuous in some open ball around (x_0, y_0) , and that $\partial_2 f$ exists at (x_0, y_0) . Show that f is differentiable at (x_0, y_0) .
 - (b) Suppose instead that $\partial_1 f$ exists and is bounded on some open ball around (x_0, y_0) , and that for fixed x the function $y \mapsto f(x, y)$ is continuous. Show that f is continuous at (x_0, y_0) .
- **11.** Consider the map $f \colon \mathbb{R}^n \to \mathbb{R}^n$ given by f(x) = x/||x|| for $x \neq 0$, and f(0) = 0.
 - (a) Using the definition of derivative, show that $x \mapsto ||x||^2$ is differentiable and compute its derivative. Note: please avoid using partial derivatives.
 - (b) Using part (a) and questions 5(b) and 5(c), show that f is differentiable except at 0, and that

$$Df|_x(h) = \frac{h}{\|x\|} - \frac{x(x \cdot h)}{\|x\|^3}.$$

Note: please avoid using partial derivatives.

- (c) Verify that $Df|_x(h)$ is orthogonal to x and explain geometrically why that is.
- **12.** Define $f: \mathcal{M}_n \to \mathcal{M}_n$ by $f(A) = A^2$.
 - (a) Show that f is continuously differentiable on the whole of \mathcal{M}_n .
 - (b) Deduce that there is a continuous square root function on some neighbourhood of the identity Id; that is, show that there is an open ball $B_{\varepsilon}(\mathrm{Id})$ for some $\varepsilon > 0$ and a continuous function $g: B_{\varepsilon}(\mathrm{Id}) \to \mathcal{M}_n$ such that $g(A)^2 = A$ for all $A \in B_{\varepsilon}(\mathrm{Id})$.
 - (c) Is it possible to define a continuous square-root function on the whole of \mathcal{M}_n ?
- **13.** Consider the function det: $\operatorname{GL}_n(\mathbb{R}) \to \mathbb{R}$, where $\operatorname{GL}_n(\mathbb{R}) = \{X \in \mathcal{M}_n \colon X \text{ invertible}\}.$
 - (a) Show that $\operatorname{GL}_n(\mathbb{R})$ is an open subset of \mathcal{M}_n .
 - (b) Show that det is differentiable over all of $\operatorname{GL}_n(\mathbb{R})$, with $D \det |_A(H) = \det A \operatorname{tr}(A^{-1}H)$.
 - (c) Show that det is twice differentiable at I and find $D^2 \det |_I$ as a bilinear map.
- **14.** Let $f_n: I \to \mathbb{R}$, with $I \subset \mathbb{R}$, be given by:

(a)
$$f_n(x) = xe^{-nx}$$
 and $I = [0, +\infty);$

(b)
$$f_n(x) = \frac{n^2 x}{1 + n^4 x^2}$$
 on $I = [0, 1];$
(c) $f_n(x) = (-1)^n \frac{x^n}{n}$ on $I = [0, 1].$

For each case, determine if the series $\sum_{n=1}^{\infty} f_n$ converges or diverges in *I*. In the former case, justify if the convergence is pointwise, uniform, pointwise absolute, uniform absolute.

- **15.** Consider the series of functions $\sum_{n=1}^{\infty} (x-n)^{-2}$, for $x \in X := \mathbb{R} \setminus \mathbb{N} \to \mathbb{R}$.
 - (a) Show that the series converges pointwise on X.
 - (b) Does the series converge uniformly on X?
 - (c) Show that the series is continuous, i.e. $f(x) = \sum_{n=1}^{\infty} (x-n)^{-2} \in C(X)$.

OPTIONAL extra problems (not for marking)

16. Let $f: U \to \mathbb{R}^m$, where $U \subset \mathbb{R}^{n+m}$ open, be a continuously differentiable function. (By convention, we use the notation $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$.) Let $x_0 \in \mathbb{R}^n$ and $y_0 \in \mathbb{R}^m$ be such

that $(x_0, y_0) \in U$. Suppose $f(x_0, y_0) = 0$ and that

$$J_y f|_{(x_0,y_0)} := \det\left(\left[\frac{\partial f^j}{\partial y^i}\right]_{i,j=0}^m\right) \neq 0$$

- (a) Let F(x, y) = (x, f(x, y)). Show that F is locally invertible around the point $(x_0, 0)$.
- (b) Let $G = (G^1, \ldots, G^{n+m})$ denote the local inverse of f. Show that, for points (X, 0), $X \in \mathbb{R}^n$, in the domain of G, one has $f(X, G^n(X, 0), \ldots, G^{n+m}(X, 0)) = 0$.
- (c) Deduce that there exists an open neighborhood $W' \subset \mathbb{R}^n$ of x_0 and an open neighborhood $W'' \subset \mathbb{R}^m$ of y_0 satisfying $W' \times W'' \subset U$, and a unique map $g: W' \to W''$ such that

$$\begin{cases} g(x_0) = y_0 \\ f(x, g(x)) = 0 \end{cases}.$$

We call g the *implicit* function defined by the zero set of f.

- (d) Show that g is differentiable and compute its derivative.
- (e) As an application, show that the level set $C = \{(x, y) \in \mathbb{R}^2 : x^3 + y^3 3yx = 0\}$ is locally graphical, except in small neighborhoods of (0, 0) and $(2^{\frac{2}{3}}, 2^{\frac{1}{3}})$.
- **17.** Let (X, τ) be a compact Hausdorff space. Let $K \subset X$ be closed and $f: K \to [-1, 1]$ be a continuous function (with respect to subspace topology on K).
 - (a) Show that there exists a continuous $g_1: X \to \mathbb{R}$ such that $\sup_X |g_1| \leq \frac{1}{3}$ and $\sup_K |f g_1| \leq \frac{2}{3}$. You may assume the following statement: for any closed disjoint sets $A, B \subset X$ and $-\infty < a < b < \infty$, one can find a continuous bump function $\chi: X \to [a, b]$ such that $\chi(x) = a$ for $x \in A$ and $\chi(x) = b$ for $x \in B$.
 - (b) For $n \ge 1$, construct continuous functions $g_n \colon X \to \mathbb{R}$ such that

$$\sup_{X} |g_n| \le \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} \quad \text{and} \quad \sup_{K} |f - \sum_{j=1}^n g_j| \le \left(\frac{2}{3}\right)^n$$

(c) Deduce that the series $g(x) = \sum_{j=0}^{\infty} g_n(x)$ is a well-defined continuous real-valued function on X such that $g|_K = f$.